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Abstract 
As time series analysis continues to capture the interest of 
cognitive and behavioral researchers, it is increasingly 
important to evaluate these methods and compare their 
respective insights. Here, we evaluate three popular analyses: 
vector autoregression, cross-correlation, and cross-recurrence 
quantification analysis. Using social cohesion data derived 
from Twitter and daily counts of real-world events during the 
Arab Spring, we present a case study using these methods and 
evaluate their benefits, limitations, and differences in results. 
We propose that researchers interested in time series analysis 
consider these differences and use multiple methods to assure 
reliability of their results.  

Keywords: vector autoregression; cross-correlation; cross-
recurrence quantification analysis; time series analysis; social 
dynamics 

Introduction 
Time series analysis has grown increasingly popular over the 
past several decades across the behavioral and psychological 
sciences. While traditional analyses of human behavior and 
cognition tended to focus on single means or standard 
deviations, recent multidisciplinary efforts have pushed 
researchers to see the variability and fluctuations of their time 
series—whether in measurements of motor behavior or brain 
areas or political movements—as not only useful but vital 
information about their phenomena of interest (Carello & 
Moreno, 2005). These time series methods are especially 
important when studying noisy, real-world data to understand 
the evolution and co-evolution of systems over time. 

As researchers move toward naturalistic time series 
analysis, many tend to focus on using one single type of 
method. Prioritizing a particular analysis across various 
experiments can be beneficial for testing reliability of results, 
but using multiple methods can help answer new theoretical 
questions and extend the knowledge of how systems interact. 
However, adoption of other kinds of time series analyses is 
often limited by knowledge of different methods and their 
relations to one another. In this paper, we evaluate three 

common time series methods: vector autoregression, cross-
correlation, and cross-recurrence quantification analysis. 
 Most prominently used in the field of econometrics, 
vector autoregression (VAR; Sims, 1980) allows for the 
investigation of the relationship between multiple signals. 
While its forecasting benefits have made it attractive to 
economists, the social sciences have begun to harness it as 
well. Some of the primary users of VAR are political 
scientists, who employ it to answer questions of causal 
inference (Freeman et al., 1989). It has been used to evaluate 
the coevolution of presidential approval ratings, economic 
factors, and leader discourse (Love & Windsor, 2018). 
 A fundamental signal processing method, cross-
correlation analysis (CC; Shumway & Stoffer, 2006) 
quantifies the correlation between two signals in and across 
time. CC has been used to investigate psychological, 
financial, mechanical, and computational phenomena, 
amongst others. Given its relative simplicity, it is often a first 
choice for those getting started with time series analysis. 

Originating from dynamical systems theory, cross-
recurrence quantification analysis (CRQA; Zbilut et al., 
1998) quantifies the repeating (or recurrent) patterns of two 
co-evolving time series, and it has become one of the most 
popular nonlinear analyses in the social sciences. In 
psychological science, it has been used to investigate 
phenomena such as emotion dynamics (Main et al., 2016) and 
gaze coupling (Richardson & Dale, 2005). CRQA has the 
ability to capture unique nonlinearities of systems (e.g., Brick 
et al., 2018) that are often overlooked by linear analyses, 
although differences in metrics do not necessarily imply 
nonlinearity. 

The current paper aims to act as a practical guide for 
selecting between and applying these methods. We build on 
a growing literature of time series comparisons, such as time-
delay stability comparisons of cross-correlation and joint 
recurrence quantification analysis for the estimation of 
coupling strength (Tolston et al., 2020), comparisons of 
linear time series analysis methods in the investigation of 
nonverbal synchrony (Schoenherr et al., 2018), and 
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conceptual comparisons of different time series analyses 
(Gates & Liu, 2016). Here, we compare two linear analyses 
and a nonlinear analysis—all of which have the ability to 
identify leading-following behavior of two time series—to 
investigate a coupled system of real-world political action 
and online social cohesion during the Arab Spring. We 
discuss the convergence and divergence of results and the 
implications of the differences. Through this work, we hope 
to guide researchers in selecting appropriate methods to best 
answer their theoretical questions. 

Time Series Analyses 

Vector Autoregression (VAR) 
Vector autoregression is a linear model that captures the 
relationship between multiple variables across time (Sims, 
1980). As an extension of univariate autoregression, VAR 
can account for multivariate data through the use of vectors. 
Each endogenous variable is given its own linear equation 
that includes lagged values of itself, lagged values of the 
other variables in the model, and an error term. The equations 
are all of a particular order, which characterizes the number 
of time lags used in the model. A VAR equation with one 
variable and ! time lags can be expressed as: 
 

"! = $ +	Φ""!#" +⋯+	Φ$"!#$ + )! 
 
where " is the variable, $ is a constant, Φ are the weights of 
the terms, and ) is an error term. A first-order VAR with two 
variables can be expressed as: 
 

"",! = $ +	Φ",""",!#" +Φ",&"&,!#" + )",! 
"&.! = $ +	Φ&,""",!#" +Φ&,&"&,!#" + )&,! 

 
The number of terms in the equations will always be identical 
and will equal two (the error and constant terms) plus the 
number of time lags times the number of terms. These 
equations allow modeling of each variable based on its past 
values and the past values of other variables in the model. 
 
Assumptions The primary assumption of VAR is that the 
time series are stationary. Stationary processes are those 
which underlying joint probability distribution, mean, and 
variance remain the same over time. While many time series 
are non-stationary, there are methods for assuring stationarity 
(see Process subsection, below). Two other assumptions are 
that the variables have been sampled consistently at a regular 
interval and that the time series are of the same scale. 
 
Process When conducting VAR, it is essential to first assess 
the stationarity of the time series. This can be done using the 
Augmented Dickey-Fuller (ADF) Test. If an ADF test 
indicates that a time series is non-stationary, differencing can 
be used to remove the trend. Typically, taking the first 
difference removes linear trends, while taking the second 
difference removes quadratic trends. 

 Once all of the time series intended for VAR are 
stationary, an optimal lag length must be determined, 
allowing for maximal information given a preference for 
model parsimony. There are four common information 
criteria used to determine optimal lag: Akaike (AIC), 
Schwarz-Bayes (SC or BIC), Akaike’s Final Prediction Error 
(FPE), and Hannan-Quinn (HQ). Of these four, AIC appears 
to be most commonly used in the social sciences, while SC is 
the most conservative. The VAR model can then be 
constructed using the selected optimal lag(s) with various 
statistical programs, including the vars package (Pfaff, 2007) 
in R (R Core Team, 2020). Once the model has been built, 
the modulus of each root is checked to assure that it is less 
than one, implying that the model is stable.  
 One of the most common structural analyses used 
on VAR models is Granger causality, indicating which 
variable “Granger causes” changes in the other. The 
underlying assumption of Granger causality is that variable 
Y can be better predicted when accounting for the history of 
both Y and some other variable X, rather than just accounting 
for Y alone (Freeman, 1983). In this instance, it would be said 
that X Granger causes Y. Alternatives to Granger causality 
include impulse-response functions (IRFs) and forecast error 
variance decomposition (FEVD; Freeman, 1983). 
 
Limitations Although researchers can handle nonstationarity 
in time series through differencing before running VAR, the 
resulting time series is inherently different from the original. 
As opposed to being an evolution of a value over time, the 
new time series is an evolution of the change in value over 
time. In the instance where there are both non-stationary and 
stationary time series going into the model, some time series 
would then be differenced, while others would not. One could 
overcome this by taking the difference of both time series, to 
assure that all are of the same scale, but this may change the 
theoretical questions that can be answered with the analyses. 

In addition to the limitations posed by the 
assumption of stationarity, VAR is a linear model and cannot 
capture nonlinearities that may be essential to the system. 
Researchers should check for nonlinearities in the system to 
assure that VAR is not overlooking critical dynamics. 
Additionally, scaling from bivariate to multivariate VAR 
requires corrections for multiple comparisons. 
 
Benefits A significant advantage of VAR over other methods 
considered here is its ability to analyze as many time series 
as desired. There are no limitations to how big the vector in 
the model is. However, it is important to recognize that the 
use of many time series may cause an increased amount of 
error to be incorrectly accounted for. VAR also allows for 
various kinds of structural analyses to analyze the patterns of 
causal behavior in the system.  

Cross-Correlation (CC) 
As a measure of similarity across time at multiple time lags, 
cross-correlation can capture the leading-following behavior 
of two time series (Gates & Liu, 2016). At each lag, a 
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correlation coefficient is calculated and can be tested for 
significance. A significant coefficient indicates that one time 
series leads the behavior of the other by * time steps.  
 
Assumptions CC assumes that time series are stationary. 
This can again be overcome by taking the difference of the 
time series to remove the trend. Stationarity should be 
checked again afterwards to assure the trend was removed. 
 
Process First, a correlation coefficient is calculated 
determining how well the time series predict one another. The 
equations for the function are: 
 

$()(,) = 	
1
!	 / 01((* + ,) − 1(301)(*) − 1)3

*+,($#!,$)

/0*12(",#!)
				 

 

4()(,) = 	
$()(,)
|$()(0)|

 

 
where $ is the covariance coefficient, , is time, * is the lag, 1 
is the current observation of the specified time series, 1 is the 
mean value of the specified time series, and 4 is the cross-
correlation coefficient (Gates & Liu, 2016; Shumway & 
Stoffer, 2006). After a coefficient is calculated, one time 
series is shifted, and the coefficient is calculated again. The 
result is a series of correlation coefficients and their 
probability of occurring by chance, measuring which time 
series leads the other and by how many time steps. 
 
Limitations CC is also a linear model and may overlook 
inherent nonlinearities fundamental to the system. There is 
also limited opportunity for interpretation of output, given 
that the only result is a series of coefficients and their 
significance, unlike VAR and CRQA.  
 
Benefits Of the three methods considered here, CC is perhaps 
the simplest analysis to understand and implement. There are 
no input parameters to select aside from the number of lags 
(also required with VAR and CRQA), leaving less room for 
experimenter error, and its output is simple to interpret.  

Cross-Recurrence Quantification Analysis (CRQA) 
As an extension of recurrence quantification analysis (which 
projects a system onto itself; Trulla et al., 1996), CRQA 
allows for the dynamical analysis of two co-evolving time 
series. Whenever the two time series are in the same state, 
either in synchronous time or across time, CRQA documents 
it and analyzes the patterning of the shared states. 
 
Assumptions For categorical CRQA, the two time series 
must be in the same unit. If the two time series are not in the 
same unit, they can be transformed (e.g., through creating 
quantiles). It is also assumed that the two time series going 
into the analysis have been sampled at a rate that corresponds 

to their native timescale. For example, a system that changes 
every hour must be sampled more frequently than a system 
that changes once every day. Under- or oversampling can 
skew the results of the analysis. 
 
Process Categorical CRQA captures the shared evolution of 
two categorical time series. By projecting two time series 
onto one another, we are able to quantify the interaction of 
the systems. CRQA identifies shared states, both in 
synchronous and asynchronous time, as recurrent points. 
These points may be sequential in time, resulting in 
trajectories. These are extended periods where the two time 
series get “stuck” together in a particular state. While the 
continuous case of CRQA requires the estimation of multiple 
parameters (Riley & Van Orden, 2005), no parameter 
estimation is required for the categorical case. When using 
the crqa package (Coco & Dale, 2014) in R, this means that 
the delay can always be set to 0; the embedding dimension to 
1; the radius to any value higher than 0 and lower than 1; and 
the Theiler window to 0. Further discussion of these 
parameters’ uses in the continuous case can be found in Riley 
and Van Orden (2005). 

Using these parameters, the next step is constructing 
a cross-recurrence plot (CRP). In this visual representation, 
the two time series are plotted against one another on the x- 
and y- axes, and for every x,y coordinate where the two have 
the same observation value, a point is plotted to indicate 
recurrence. The plot can be both visually inspected for the 
texture and pattern of the system by looking at the trajectories 
and box-like areas and quantified with various metrics. The 
leading-following behavior of the time series is analyzed 
through another visual representation, known as a diagonal 
recurrence profile (DRP; Main et al., 2016). DRPs are 
conceptually and visually similar to cross-correlation plots. 
In a DRP, recurrence rate is on the y-axis, and time lag is on 
the x-axis; a synchronous relationship would display a peak 
at 0, while a leading-following relationship would show a 
peak at a negative or positive lag value.  
 
Metrics Nine quantitative measurements can be derived from 
the CRP to conduct inferential statistics. The first metric is 
recurrence rate (RR), the proportion of recurrent points to all 
possible places where there could have been a point. RR is a 
general measure of how much the two systems are sharing 
the same state, but it does not incorporate information about 
the structure or location of the points. Determinism (DET) is 
a measure of the structure of recurrence, formalized as the 
proportion of points that occur in diagonal trajectories. It 
indicates how deterministic or how random the coupled 
systems’ co-evolution is. Total number of lines (NRLINE) 
also indicates stability and scales with structure, as an 
increased number of lines suggests stronger coupling. Max 
line (maxL) is the longest shared diagonal trajectory and is a 
measure of attractor strength (Pellecchia et al., 2005). 
Additional metrics are entropy (ENTR), normalized entropy 
(nENTR), laminarity (LAM), and trapping time (TT). For 
more detail, see Coco and Dale (2014).  
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Limitations First, compared to VAR and CC, CRQA has 
fewer educational resources available, perhaps because its 
use is somewhat limited in the cognitive science community. 
Second, CRQA does not inherently produce significance 
metrics. Because there is no null comparison, one must be 
generated in order to perform inferential statistics. This can 
be done by conducting approximate permutation tests (e.g., 
Chiovaro et al., under review), where a large set of pseudo-
time series is generated by randomly sampling from the 
original time series without replacement. This set is then 
subjected to CRQA, and the resulting metrics are used as the 
null distribution, although RR must be excluded from plot-
wise analyses (like those here), as it remains constant.  
 
Benefits Unlike CC and VAR, CRQA is a nonlinear analysis. 
Complex interactions of coupled systems can produce 
nonlinear dynamics. While VAR and CC would overlook 
these patterns, CRQA can provide multiple windows into 
these nonlinearities through various metrics. Because the 
linear case is a subset of the nonlinear case (Carello & 
Moreno, 2005), CRQA is capable of capturing both linear 
and nonlinear patterns in co-evolution.  Additionally, there 
are also many extensions of the analysis, such as windowed 
and joint recurrence, all of which can be used for categorical 
or continuous data. 

Methods 

Corpus 
The goal of these analyses was to analyze the co-evolution of 
online social cohesion (via Twitter data) and real-world 
action (via event data). We use a corpus originally presented 
in Chiovaro and colleagues (under review), where we 
investigate if the frequency of real-world events of varying 
intensities (e.g., positive events such as treaties and negative 
events such as bombings) coincides with the real-time 
linguistic cohesion on Twitter. Although a full accounting of 
the corpus is outside of the scope of the current work, we 
present a brief review of these components below. 
 
Social Cohesion The first set of data used was a corpus of 
3,443,742 English-language Syrian tweets dated between 
March 31–June 15, 2012, that used the keywords “syria,” 
“syrian,” “damascus,” “homs,” “al-assad,” and “sunni.” The 
corpus contained 63.2% original tweets, 33.5% retweets, and 
3.4% replies. The corpus included an average of 44,723.92 
tweets per day and a total of 574,104 unique users. The scripts 
for collecting and compressing data can be found at 
https://github.com/chbrown/twilight. 

To quantify the social cohesion within the tweet 
corpus, we sorted the tweets in chronological order, grouped 
them into successive groups of five, and then used a process 
conceptually similar to term frequency-inverse term 
document frequency (Chiovaro et al., under review). 
Essentially, the social cohesion metric quantified two tweets 
as more similar if the two tweets shared more words that 

occurred fewer times in the corpus overall. This method 
allowed us to measure how similar tweets were in their 
language over time. We then averaged the social cohesion 
values within the groups of five to get a group average, and 
then averaged across the groups for each day, yielding a daily 
social cohesion metric. To make the social cohesion data 
comparable to the second dataset, the social cohesion time 
series was converted into deciles. 
 
Events The second set of data were event data obtained from 
the 2012 Integrated Crisis Early Warning System (ICEWS; 
Boschee et al., 2015). The dataset was filtered to remove 
incomplete and incorrectly formatted data. A filter was then 
applied to include only events that were directed at Syria (i.e., 
Syria-target events; n = 6,300). We then counted all Syria-
target events for each day, yielding a daily event count. To 
make the event data comparable to the social cohesion data, 
the event time series was also converted into deciles. 

Analyses 
VAR, CC, and categorical CRQA were all conducted using 
the deciled social cohesion and event time series. For VAR 
and CC, ADF tests identified social cohesion and event time 
series as nonstationary; we took the first difference of each 
time series, resulting in stationary time series. We used the 
original nonstationary time series for CRQA, as it is capable 
of handling such data. All code for the analyses can be found 
at https://www.github.com/mchiovaro/time-series-analyses. 

Results and Discussion 

Vector Autoregression (VAR) 
SC suggested an optimal lag of 1, while AIC suggested an 
optimal lag of 6. We conducted both models (Table 1). The 
moduli of the roots indicated that both models were stable. 
Using SC criteria, neither social cohesion nor event time 
series Granger caused one another. Under AIC, social 
cohesion did not Granger cause the frequency of events, but 
the daily event counts did Granger cause the level of social 
cohesion on Twitter. (As noted previously, alternatives to 
Granger causality include IRFs and FEVD, but these are 
outside the scope of the current work.) 
   

 
Table 1. Granger causality results for social cohesion and 

count of events using two information criteria, SC and AIC. 

Cross-Correlation (CC) 
Cross correlation analysis of social cohesion and frequency 
of real-world events revealed significant correlations for -2 
and -4 lags (Fig. 1). In other words, the changes in social 
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cohesion levels on Twitter led changes in the number of 
events happening on the ground by 2 and 4 days. This may 
suggest that individuals used Twitter to rally and facilitate 
plans for action; alternatively, the Syrian government may 
have responded to increased Twitter activity with additional 
actions. Based on the current data, these possibilities cannot 
be disentangled. Further analyses involving the specific 
parties who initiated these events and more detailed content 
analyses are needed to answer these questions.  
 

 
Figure 1. Cross-correlation plot. Horizontal dashed blue 
lines indicate confidence intervals (otherwise known as 

conventional cross-correlation limits, ccsls), but for 
limitations of using ccsls, see Dean & Dunsmuir (2016).  

Cross-Recurrence Quantification Analysis (CRQA) 
The CRP (Fig. 2) shows many shared trajectories between the 
time series and a shift in texture about the 32nd time point, 
where there appears to be an increase in the number of lines. 
 

 
Figure 2. Recurrence plot for Twitter social cohesion and 
daily count of events. Points represent shared states of the 

two time series (in deciles). 
 

CRQA metrics were tested for significance against 
a distribution of 1,000 permuted time series, with a customary 
alpha of .05. In other words, significant metrics were higher 
than would be expected by chance—in this case, observed in 

our permuted time series in no more than 50 simulations. We 
focused here only on DET, NRLINE, and maxL (Table 2).  

The social cohesion and event data often got “stuck” 
together in the same relative states across time (DET). In 
addition, they entered these shared states more frequently 
than chance (NRLINE). Together, these results suggest that 
the two systems are coupled in their behavior. The trend 
toward significance for maxL suggests indicates that it was 
approaching a stable relationship, though it did not reach 
statistical significance. 
 

 
Table 2. CRQA results for social cohesion and event count. 

RR is not included due to the nature of approximate 
permutation tests (Chiovaro et al., under review). 

 
The DRP (Fig. 3) showed no reliable leader between 

the two time series, as shown by the jagged line through the 
majority of lags investigated. The peaks seen here indicate an 
increased amount of recurrence at particular time lags, similar 
to how CC indicated stronger correlation strength at different 
time lags. For example, social cohesion led at 7, 11, and 15 
days, with a large spike at the 15-day lag, and the count of all 
events led at 5 and 9 days. Comparing CRQA and CC results, 
we saw converging evidence of spikes in social cohesion 
leading real-world events by 2 and 4 days, although the 
patterns for CRQA were more complex than for CC.  

 

 
Figure 3. Diagonal recurrence profile for Twitter social 

cohesion and daily count of events. The red line is the DRP 
for the actual data. The black line is the DRP for the mean 

of the 1,000 permuted time series (bars: ±1 SD). 
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Comparing Time Series Analyses 
Within the context of a growing interest in time series 
analyses in psychological and cognitive science, we here 
presented a direct comparison of three different methods on 
the same time series. We did so to highlight the importance 
of the underlying theoretical questions and structures of the 
available data when deciding among these methods.  
 
When to Choose Vector Autoregression VAR can answer 
how two or more variables covary over time, allowing for 
investigations of multivariate time series. Uniquely among 
the analyses considered here, VAR can uncover the causal 
relationships among time series. However, it assumes 
stationarity (which can be addressed by altering the original 
time series) and requires estimation of important parameters. 
It also is a symmetric model, requiring the same number of 
lags to be used across all equations. Given the dynamic nature 
of coupled systems subjected to time series analysis, it may 
be more beneficial to use the more flexible method of 
asymmetric vector autoregression (AVAR; Keating, 2000). 
The parameter estimates in AVAR also typically have 
smaller standard errors than those resulting from VAR. VAR 
may be most appealing when investigating causality between 
two (or more) time series that have linear and stationary 
dynamics.  
 
When to Choose Cross-Correlation CC can answer how 
only two variables covary over time, but its simplicity—
requiring no parameter estimation—is its strength. Unlike 
VAR, CC cannot determine causal structure, but it can 
identify leader-follower patterns within specified levels of 
temporal proximity. Like VAR, CC is also a stationary, linear 
analysis and cannot capture nonlinearities. CC may be most 
useful when examining similarities and leader/follower 
patterns between two linear, stationary time series. 
 
When to Choose Categorical CRQA Categorical CRQA’s 
strength lies in its ability to uncover even nonlinear dynamics 
of two time series. Without requiring parameter estimation, it 
can help researchers answer questions about the structure, 
stability, and patterning of the interaction of two variables 
over time. Its nine metrics provide many angles for analyzing 
the relationship between the two variables, and the DRP can 
capture leading-following behavior. Unfortunately, CRQA 
cannot answer questions about causality. Categorical CRQA 
may be most beneficial when quantifying linear and 
nonlinear patterns in the co-evolution of two time series. 
 
Examining Converging and Diverging Results Our 
analyses of the same data using these three methods 
uncovered some similar and some dissimilar patterns. VAR 
suggested that there was either no relationship or only slight 
Granger causality of social cohesion by the frequency of real-
world events across the entire time series. CC suggested the 
opposite (though non-causal) relationship, with the social 
cohesion time series appearing to lead the changes in the 

number of daily events at a shorter timescale (±15 days). 
Finally, CRQA identified the two systems as coupled but 
without a clear leader-follower relationship, instead showing 
a back-and-forth trade-off within the same time window. 

One potential contributor to the differences in these 
patterns of results may be the difference between 
leading/following and causality. In other words, although 
both CC and CRQA identified leading/following patterns, 
these patterns may not have been truly (Granger) causal in 
nature. The pairing of causal (VAR) and non-causal (CRQA 
and CC) methods may provide meaningful information about 
two levels of the system, capturing both fluctuations in the 
time series and deeper causal relations. 

Another potential contributor to the differences in 
leading/following patterns may be due to the fact that VAR 
assumes that causal patterns in each time series occur at the 
same number of lags. However, it would not be surprising if 
the two time series—one being a measure of language on 
social media and the other being a count of real-world 
events—required different lags. Thus, causality may be more 
appropriately captured with AVAR. 

Finally, differences between the linear (VAR and 
CC) and nonlinear (CRQA) analyses may have been affected 
by the data in question, as the data were transformed from 
analyses of states to analyses of relative changes in state to 
satisfy the stationarity assumption of the linear analyses. This 
attests to the importance of considering necessary data 
transformations when choosing analyses. Given the 
nonstationarity of some of the time series, we took the first 
difference and used these transformed time series for VAR 
and CC, but we used the untransformed (nonstationary) time 
series for CRQA. Differencing could have overshadowed 
dynamic changes in the observations that were captured by 
CRQA, which does not require stationarity. Thus we suggest 
that researchers using nonstationary time series consider the 
impacts of differencing on their data, and potentially utilize 
only analyses that assume stationarity or only those that do 
not require it.  

Conclusion and Future Directions 

Our case study suggests that the ability of a specific time 
series analysis to identify time-lagged relations among time 
series is highly dependent upon the scale of the lags and, 
perhaps, nonlinearities in the system. However, further 
investigation is necessary to understand the diverging results 
identified across these three types of analyses. Future 
comparisons should focus on analyses of simulated data, in 
order to analyze each method’s ability to capture different 
patterns of psychological and behavioral data. Such 
simulation studies may inform a framework for selecting 
among these and other time series methods. 
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